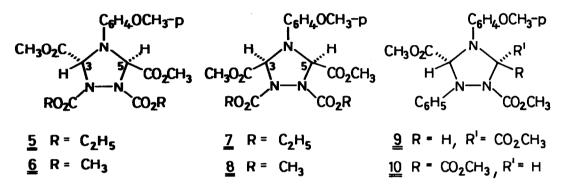

CYCLOADDITIONS OF AZIRIDINES TO AZO COMPOUNDS

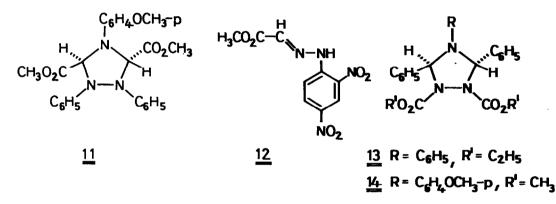

Erwin Brunn and Rolf Huisgen

Institut für Organische Chemie der Universität München (Germany) (Received in UK 21 December 1970; accepted for publication 4 January 1971)

Substituted aziridines like $\frac{1}{2}$ and $\frac{2}{2}$ exist in thermal equilibrium with small concentrations of azomethine ylides as $\frac{3}{2}$ and $\frac{4}{2}$ (1). Ring scission and ring closure are conrotatory electrocyclic processes (2). The azomethine ylides can be intercepted by 1,3-dipolar cycloaddition to a variety of olefinic and acety-lenic dipolarophiles (1-7). Also azo compounds turned out to be suitable acceptors.

On heating dimethyl 1-(p-methoxyphenyl)-aziridine-2.3(<u>cis</u>)dicarboxylate $(\frac{1}{2})$ with <u>diethyl azodicarboxylate</u> in toluene (24 hrs. 100[°], N₂), 96% of the triazolidine derivative $\frac{5}{2}$ (m.p. 109-111[°]) with <u>trans</u>-located ester groups in 3- and 5-position were formed (8). The same high stereospecificity (n.m.r. analytical limit 1%) was observed in the formation of $\frac{6}{2}$ (m.p. 126-128[°]) from $\frac{1}{2}$ and <u>dimethyl</u> azodicarboxylate. Under the same conditions the <u>trans</u>-2,3-substituted aziridine $\frac{2}{2}$ provided the triazolidine-3,5-<u>cis</u>-diesters $\frac{7}{2}$ (m.p. 89-90.5°) and $\frac{8}{2}$ (m.p. 163-165°), respectively, but with a lower degree of stereospecificity. With dimethyl azodicarboxylate 94% adduct was obtained which consisted of $\frac{8}{2}$ and $\frac{6}{2}$ in a 93:7 ratio. Diethyl azodicarboxylate in toluene at 100° yielded 71% of a 90:10 mixture of $\frac{7}{2}$ and $\frac{5}{2}$; the reaction without solvent furnished 78% $\frac{7}{2}$ + $\frac{5}{2}$ in a 94:6 proportion. We showed earlier that the azomethine ylide $\frac{4}{2}$ undergoes cycloadditions somewhat more slowly than $\frac{3}{2}$ does (9). Thus, part of the intermediate $\frac{4}{2}$ isomerizes to 3 before combining with the azo dipolarophile.

The structures 5 - 8 which are based on n.m.r. evidence, all contain pairs of equivalent ester alkyl groups. The ring protons in 3- and 5-position appear as singlets at τ 3.99 and 3.96 in 5 and 6, respectively (10). The less efficient deshielding by a <u>trans</u>-located ester group on the other side of the ring is responsible for the higher chemical shift of 3-H and 5-H in the <u>trans</u>-2,5-diester: τ 4.29 in 7 and 4.36 in 8.


While the singlet of the ring protons in 5 and 6 is sharp between -40° and $+40^{\circ}$, it is a broad hump in $\frac{7}{2}$ and $\frac{8}{2}$ at 38° , The singlet of $\frac{7}{2}$ at τ 4.29 sharpens on-raising the temperature and separates reversibly into two singlets (one proton each at 3.93 and 4.50) on cooling to -20° . Line shape analysis in the range from 4° -39° and computation by the program GHS (11) disclosed a dynamic process with ΔH^{\ddagger} 15.5 \pm 0.8 kcal/mol and ΔS^{\ddagger} = 1.6 \pm 2 e.u. As the phenomenon is only observable in the 3,5-cis-diesters $\frac{7}{2}$ and $\frac{8}{2}$, hindered rotation is ruled out. The planarity of the carbamate structure makes N-inversion inconceivable. The investigations of Anderson and Lehn (12) on related compounds would suggest a ring inversion. The planes of the two carbamate nitrogens in $\frac{7}{2}$ and $\frac{8}{2}$ are twisted versus each

No.6

other; the system flips <u>via</u> a strained coplanar transition state to the mirror image conformation. In the <u>trans-3,5-diesters 5</u> and 6, both conceivable confor-

mations with respect to the carbamate nitrogen planes - one conformation should be preferred for steric reasons - possess C_2 symmetry; 3-H and 5-H remain equivalent.

A 93:7 mixture of $\frac{2}{2}$ and $\frac{1}{2}$ reacted with 4 equiv. <u>methyl phenylazocarb</u>oxylate in toluene (24 hrs. 100[°]); n.m.r. analysis indicated 97% of the adducts $\frac{9}{2}$ and $\frac{10}{2}$ in a 81:19 mixture. The sing lets for 3-H and 5-H of the 3,5-<u>cis</u>-diester (m.p. 158-160[°]) showed up at τ 4.37 and 4.40 while the not isolated <u>trans</u>-form $\frac{10}{2}$ possesses one-proton singlets at τ 3.88 and 4.31.

No 1,3-dipolar cycloadditions to <u>azobenzene</u> seem to have been described. Only ketenes are able to overcome this inertness in their 2+2 cycloadditions (13). It speaks for the 1,3-dipolar activity of the azomethine ylide $\frac{3}{2}$ that the reaction of $\frac{2}{2}$ (via $\frac{4}{2}$ by isomerisation) with azobenzene in toluene (18 hrs. 100° , 6 hrs. 120°) afforded 26% of $\frac{11}{==}$ (m.p. 115.5-117.5°). The <u>trans</u>-3,5-protons give rise to a singlet at τ 4.27. On treatment with 2,4-dinitrophenylhydrazine in alcoholic sulphuric acid, $\frac{11}{==}$ behaved as a cyclic aminal and yielded 56% of $\frac{12}{=}$ besides benzidine sulphate.

Heine et al. (3) have described the formation of 13 from 1,2,3-triphenylaziridine and diethyl azodicarboxylate. Analogously, 2,3(<u>cis</u>)-diphenyl-1(p-methoxyphenyl)aziridine (14) reacted with an excess of dimethyl azodicarboxylate to give a quantitative yield of the adduct 14 (m.p. 149-151°)(15). The ester me-

No.6

475

thyls (s τ 6.51) as well as the ring protons in 3- and 5-positions (s τ 3.12) are equivalent.

REFERENCES

- R. Huisgen, W. Scheer, G. Szeimies, and H. Huber, <u>Tetrahedron Letters</u>, <u>1966</u>, 397.
- (2) R. Huisgen, W. Scheer, and H. Huber, <u>J.Amer.Chem.Soc.</u>, <u>89</u>, 1753 (1967).
- (3) H.W. Heine, R. Peavy, and A.J. Durbetaki, <u>J.Org.Chem.</u>, <u>31</u>, 3924 (1966).
- (4) A. Padwa and L. Hamilton, J.Heterocyclic Chem., 4, 118 (1967).
- (5) J.A. Deyrup, <u>J.Org.Chem.</u>, <u>34</u>, 2724 (1969).
- (6) P.B. Woller and N.H. Cromwell, <u>J.Org.Chem.</u>, <u>35</u>, 888 (1970).
- (7) J.W. Lown and K. Matsumoto, Canad.J.Chem., 48, 2215 (1970).
- (8) All new adducts gave satisfactory C,H,N analyses.
- (9) R. Huisgen, W. Scheer, H. Mäder, and E. Brunn, <u>Ang.Chem.Internat.Edit.</u>, <u>8</u>, 604 (1969).
- (10) All n.m.r. spectra were taken in CDCl₃ on a Varian A-60 with TMS as internal standard.
- (11) H.S. Gutowsky and C.H. Holm, J.Chem. Phys., 25, 1228 (1956).
- (12) J.E. Anderson and J.M. Lehn, <u>Tetrahedron</u>, 24, 123, 137 (1968).
- (13) A.H. Cook and D.G. Jones, <u>J.Chem.Soc.</u>, <u>1941</u>, 184; G.O. Schenck and N. Engelhard, <u>Ang.Chem.</u>, <u>68</u>, 71 (1956); J.H. Hall, <u>J.Org.Chem.</u>, <u>29</u>, 3188 (1964).
- (14) L.E. Ellis, R. Huisgen, and W. Scheer, forthcoming publication.
- (15) Experiment carried out by Dr. W. Scheer.